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Points and Vectors in Rn

A point in Rn is an ordered sequence of real numbers,
denoted

(x1, x2, . . . , xn) ∈ Rn.

A vector in Rn is an ordered sequence of real numbers,
denoted

〈x1, x2, . . . , xn〉 ∈ Rn.

Generally, a point signifies a location, while a vector
signifies direction and magnitude.
However, this distinction will be blurred somewhat, since
we will use the “position vector of a point” to represent the
point itself. The position vector of the point

(x1, x2, . . . , xn)

is
〈x1, x2, . . . , xn〉.

Math 231 Sections 1.1 and 1.2



Points and Vectors in Rn

A point in Rn is an ordered sequence of real numbers,
denoted

(x1, x2, . . . , xn) ∈ Rn.

A vector in Rn is an ordered sequence of real numbers,
denoted

〈x1, x2, . . . , xn〉 ∈ Rn.

Generally, a point signifies a location, while a vector
signifies direction and magnitude.
However, this distinction will be blurred somewhat, since
we will use the “position vector of a point” to represent the
point itself. The position vector of the point

(x1, x2, . . . , xn)

is
〈x1, x2, . . . , xn〉.

Math 231 Sections 1.1 and 1.2



Points and Vectors in Rn

A point in Rn is an ordered sequence of real numbers,
denoted

(x1, x2, . . . , xn) ∈ Rn.

A vector in Rn is an ordered sequence of real numbers,
denoted

〈x1, x2, . . . , xn〉 ∈ Rn.

Generally, a point signifies a location, while a vector
signifies direction and magnitude.
However, this distinction will be blurred somewhat, since
we will use the “position vector of a point” to represent the
point itself. The position vector of the point

(x1, x2, . . . , xn)

is
〈x1, x2, . . . , xn〉.

Math 231 Sections 1.1 and 1.2



Points and Vectors in Rn

A point in Rn is an ordered sequence of real numbers,
denoted

(x1, x2, . . . , xn) ∈ Rn.

A vector in Rn is an ordered sequence of real numbers,
denoted

〈x1, x2, . . . , xn〉 ∈ Rn.

Generally, a point signifies a location, while a vector
signifies direction and magnitude.
However, this distinction will be blurred somewhat, since
we will use the “position vector of a point” to represent the
point itself. The position vector of the point

(x1, x2, . . . , xn)

is
〈x1, x2, . . . , xn〉.

Math 231 Sections 1.1 and 1.2



Vector Operations

To add two vectors in Rn, we add coordinates:

〈x1, x2, . . . , xn〉+〈y1, y2, . . . , yn〉 = 〈x1 + y1, x2 + y2, . . . , xn + yn〉.

To multiply a vector by a scalar α, we multiply each
coordinate by α:

α · 〈x1, x2, . . . , xn〉 = 〈αx1, αx2, . . . , αxn〉.

Except in special cases (namely, the cross product in R3),
there is no natural notion of “vector multiplication.”
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Properties of Vector Operations

Theorem 1.8:
1 For all ~x, ~y ∈ Rn, ~x + ~y = ~y + ~x.
2 For all ~x, ~y,~z ∈ Rn, (~x + ~y) +~z = ~x + (~y +~z).
3 For all ~x ∈ Rn, ~x + ~0 = ~0 + ~x = ~x.
4 For all ~x ∈ Rn, ~x + (−~x) = (−~x) + ~x = ~0.
5 For all ~x ∈ Rn and all α, β ∈ R, α(β~x) = (αβ)~x.
6 For all ~x ∈ Rn and all α, β ∈ R, (α+ β)~x = α~x + β~x.
7 For all ~x, ~y ∈ Rn and all α ∈ R, α(~x + ~y) = α~x + α~y.
8 For all ~x ∈ Rn, 1~x = ~x.
9 For all ~x ∈ Rn, 0~x = ~0.
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Length of a Vector

Given a vector ~x = 〈x1, . . . , xn〉 in Rn, the magnitude or
length of ~x is defined as∣∣∣∣~x∣∣∣∣ =√x2

1 + x2
2 + · · ·+ x2

n .

The distance between points A and B is
∣∣∣∣∣∣∣∣−→AB

∣∣∣∣∣∣∣∣.
Theorem 1.10:

1 For all ~x ∈ Rn,
∣∣∣∣~x∣∣∣∣ ≥ 0.

2 For all ~x ∈ Rn,
∣∣∣∣~x∣∣∣∣ = 0 if and only if ~x = ~0.

3 For all ~x ∈ Rn and α ∈ R,
∣∣∣∣α~x∣∣∣∣ = |α| ∣∣∣∣~x∣∣∣∣.
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Unit Vectors

A vector whose length is 1 is called a unit vector.
A nonzero vector ~x ∈ Rn can be scaled to a unit vector ~u in
the same direction as ~x using the formula

~u =
1∣∣∣∣~x∣∣∣∣~x.
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